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Iterative algorithms are widely applied in reliability analysis and
design optimization. Nevertheless, phenomena of failed conver-
gence, such as periodic oscillation, bifurcation, and chaos, are
oftentimes observed in iterative procedures of solving some
nonlinear problems. In the present paper, the essential causes of
numerical instabilities including periodic oscillation and chaos of
iterative solutions are revealed by the eigenvalue-based stability
analysis of iterative schemes. To understand and control these
instabilities, the stability transformation method (STM), which is
capable of tackling numerical instabilities of iterative algorithms
in reliability analysis and design optimization, is proposed.
Finally, several benchmark examples of convergence control of
PMA (performance measure approach) for probabilistic analysis
and the SORA (sequential optimization and reliability assessment)
for reliability-based design optimization (RBDO) are presented.
The observations from the benchmark examples indicate that
the STM is a promising approach to achieve convergence
control for iterative algorithms in reliability analysis and design
optimization. [DOI: 10.1115/1.4023327]
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1 Introduction

In practice, most problems of interest in structural and mechani-
cal systems exhibit nonlinear behavior. At present, iterative
approaches are popular for solving nonlinear analysis and design
problems of engineered systems. As they are easy to understand
and convenient to run, iterative methods are widely used in engi-
neering practice. For some nonlinear systems, however, iterative
methods cannot acquire convergent solutions (namely, fixed point
solutions). In some cases, iterative methods only obtain oscillating
periodic solutions (i.e., they fall into cycling with certain period),
while in others they obtain chaotic solutions (theoretically, infinite
periodic solutions within a specific region) with pseudorandom-
ness and disorder. Unfortunately, in the fields of computational
mechanics and engineering, many researchers lack the knowledge
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that reveals inherent mechanisms of complicated phenomena such
as oscillation and chaos in numerical solutions of iterative equa-
tions, and have very limited insights on how to control their con-
vergent behavior and capture desired fixed points (i.e., period-1
solutions).

Recently, Yang and his colleagues [1-6] investigated essential
reasons of iterative failure of some popular algorithms used in
reliability analysis, design optimization, and other fields. The
popular algorithms explored were FORM (first order reliability
method), PMA, SAP (sequential approximate programming) with
PMA based probabilistic optimization, convex approximation
optimization (e.g., the convex linearization method and the
method of moving asymptotes), and the capacity spectrum method
for structural seismic analysis. Furthermore, they suggested a set
of convergence control strategies for these iterative algorithms
from a new perspective of nonlinear dynamics.

Actually, chaotic dynamics theory [7-10] is a powerful tool
for comprehensively understanding complicated phenomena of
numerical instabilities, and controlling convergence failure of iter-
ative methods. The iterative procedure of a nonlinear system
forms a nonlinear map, i.e., X, =f(x;); this nonlinear map can
be viewed a discrete dynamical system. When the spectral radius
of the Jacobian matrix of a dynamical system at a fixed point is
larger than 1, its solution can yield numerical instabilities of
divergence (i.e., the solution tends to infinite), periodic oscillation,
bifurcation (the state of solution changes, e.g., periodic doubling
bifurcation refers to a solution from a fixed point to period-2 point
and to period-4 point, etc.), and chaos in the specific parameter
interval. Otherwise, when the spectral radius of the Jacobian
matrix of a dynamical system is less than 1, a stable and conver-
gent solution arises [9]. The stability analysis of fixed point solu-
tions is of significance in grasping evolutional behaviors of
nonlinear dynamical systems, see [8—10] for details.

In recent years, RBDO has been of great interest in the field of
structural and mechanical engineering [11,12]. The numerical
approaches for RBDO are classified into three categories accord-
ing to the type of iterative formulations: two-level approaches,
monolevel approaches, and decoupled approaches. Specifically,
two-level approaches consist of two loops. The outer loop per-
forms the cost optimization, and the inner loop assesses reliability
constraints. Monolevel approaches are also called single loop
approaches as they solve RBDO problems in a single loop
procedure to avoid the explicit reliability analysis. The third type
of numerical solution technique, decoupled approaches, separate
reliability analysis from the optimization procedure [11,12]. The
SORA method is one such decoupled approach with reasonable
computational demand for complex structural systems [11,13].
SORA, however, may suffer from the aforementioned numerical
instability challenges on some occasions.

This paper first reveals fundamental causes for iterative failure
based on the stability analysis of the Jacobian matrix of iterative
systems. Furthermore, based upon the principle of chaos control,
the STM is proposed to control periodic oscillation, bifurcation,
and chaos of iterative schemes for reliability analysis and optimi-
zation. The STM method also finds stable convergent solutions.
Moreover, STM is suggested to conquer the nonconvergence issue
of PMA for probabilistic analysis and SORA. To warrant these
claims, several illustrative examples are studied. The stability
analysis of fixed point of the nonlinear iterative map derived from
PMA and convergence control for SORA using STM are the main
contributions of this work.

2 Numerical Instabilities of Iterative Algorithms in
Reliability Analysis and Design Optimization

The nonlinear map derived from iterative algorithms in reliabil-
ity analysis and optimization can be generally expressed as an n-
dimensional discrete dynamical system

Xiy1 = f(Xi, p) (1)
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in which k denotes the kth iteration, the iterative function vector f
is differentiable, x is a n X 1 dimensional state vector, and p is a
vector of control parameters of the dynamical system. This
dynamical system has an explicit or implicit expression according
to a specific problem to be solved. Sometimes, it is difficult to
determine the control parameters in complicated systems. In the
HL-RF algorithm of FORM [14-17] and the AMV (advanced
mean value) formula of PMA [18-22], the mean value yu or the
standard deviation ¢ of random variables can be regarded as con-
trol parameters of nonlinear maps.

Even for a very simple nonlinear map like the Logistic map
Xiw1 = f(xx, 1) = rxp(1 — xz), where 7 is a control parameter with
1 <r <4, the evolutionary dynamics behavior is quite complex
with iterative solutions that may exhibit periodic oscillation, bifur-
cation, and chaos for certain control parameter intervals [7-10].
The Logistic map is a typical nonlinear dynamical model often
used to describe the growth of biological populations [1,7-9].

For iterative algorithms, like dynamical systems, numerical
stability depends on the mathematical form of the nonlinear map.
If the spectral radius (i.e., the maximum of the absolute value of
the eigenvalues) of the Jacobian matrix J (J = of;/ 8x,|xr) of a
dynamical system (1) at the fixed point X; is larger than 1, namely,
p(J) > 1, the fixed point will lose its stability in the specific pa-
rameter interval and repel future iterations of the iterative scheme.
This repellant behavior leads to stability and convergence issues
like periodic oscillation, bifurcation, and chaos. On the other
hand, if the spectral radius of the Jacobian matrix of dynamical
system (1) is smaller than 1 (p(J) < 1), the fixed point x; is attrac-
tive and a stable, convergent solution is obtained. If p(J) =1,
the stability of the iterative solution is indefinite and may be
attractive or repellant [9]. The detailed examples of stability anal-
ysis for iterative maps from practical application are shown in
Secs. 3 and 4.

The above stability conditions of iterative systems indicate that
when one uses iterative algorithms for engineering computations,
or when one attempts to prove the convergence of iterative algo-
rithms, it is necessary to take both the existence and stability of
fixed points into account.

3 Stability Transformation Method for Convergence
Control of Iterative Algorithms

As pointed out in Sec. 2, an iterative dynamical system (1)
could lose stability of fixed points and produce undesired periodic
and chaotic solutions. The character of stability and convergence
theoretically depend on the spectral radius p(J) of Jacobian matrix
of dynamical system X;.; = f(x,p). An illustrated example of
the Henon nonlinear map is displayed later to demonstrate this
concept. Numerical analysis demonstrates how the spectral radius
p(J) of system affects the stability of fixed points and convergence
of solutions.

Fortunately, chaos feedback control can catch desired fixed
points embedded in the chaotic attractor of nonlinear dynamical
system through implementing the target guidance and position.
Feedback control can also stabilize unstable fixed points involved
in the periodic orbit of dynamical systems, and control oscillation
and bifurcation [8,23,24].

Schmelcher and Diakonos [23] introduced an appropriate linear
transformation to modify the eigenvalues of Jacobian matrix of
original dynamical systems (1) and stabilize unstable fixed points
of original systems without changing their values and locations.
This method is referred to the stability transformation method
[24], whose expression is

Xp+1 = X¢ + gC[f(x¢, p) — x4 2
in which, 0 < ¢ < 1, C is the n x n dimensional involutory matrix.

In this matrix, only one element in each row and each column in
this"matrix is 1"or —1, and the others are 0. The total number of
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permissible involutory matrices is 2"n!, and C is an orthogonal
matrix. ~
The Jacobian matrix J of the STM scheme (2) is formulated as

J=1+4¢CJ-1) 3)

Theoretically, the factor ¢ and involutory matrix C can be chosen
to make the spectral radius of Jacobian matrix of STM equation
less than 1 (p(J) < 1) and thus achieve stable convergence. In
general, the selection of involutory matrix C in Eq. (2) relies on
the original system’s properties. To enhance the efficiency of sta-
bilizing the periodic orbit, it is unnecessary to take all the 2"n!
involutory matrices, but it is desirable to select the minimum set
of these matrices. Usually, selecting the identity matrix for C can
stabilize the unstable fixed point of the chaotic dynamical system.
Moreover, selection of the factor ¢ is closely dependent on the
spectral radius of the original system’s Jacobian matrix at the
fixed point. The larger the spectral radius of the Jacobian matrix
of the original dynamical system, the smaller the factor ¢ should
be taken to achieve stabilization. Smaller values of ¢ lead to a
larger number of iterations required to obtain convergent solutions
[2-5]. When C =1 (I is the identity matrix), Eq. (2) becomes

X1 = Xe + q[f (X, p) — X 4

where if ¢ =1 the original dynamic system is not controlled. The
advantages and limitations of STM are clarified in Refs. [2-5].
Overall, STM is an effective, simple and versatile approach to
realize the control of periodic oscillation, bifurcation, and chaos
of dynamical systems.

Finally, one representative nonlinear iterative map, the Henon
map [8.,9], is presented as an example to illustrate complicated dy-
namical behavior, instability analysis and convergence control by
STM. The nonconvergence phenomena and convergence control
of PMA for probabilistic analysis and SORA for RBDO will be
presented in Secs. 4 and 5. In 1976, Henon constructed this map
from an astronomical model. The Henon map can be obtained
through superimposing three simple maps [8,9].

Example 1: Henon map [8,9]

{Xk+1 =a—x;+by ©)
Yi+1 = Xk

in which b is a parameter, and a is the control parameter of the dy-
namical system. Usually, b=0.3and 0 < a < 1.4.

If the Henon map has fixed points, then x;,;=x;=x
Yie1 =Yr=Yr Substituting them into Eq. (5) shows the fixed
points of the Henon map are

o — — -+ — 2
=i o o
Y = X

The Jacobian matrix of the Henon map is written as

Oxks1 OXpyy
Oxy. Oy { —2x; b }
J= — 7
Oer1 OVera 1 0 @
Oxy Oy

Further, the eigenvalues of Jacobian matrix of the Henon map at

one fixed point are
/11‘22 *Xfi\/)(%ﬁ»b (8)

Figure 1 shows the two eigenvalues of the Henon map
corresponding to the larger fixed point changing with the control
parameter a. It is seen that the larger eigenvalue 4, is always less
than 1. While the absolute value of smaller eigenvalue 4, is less
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Fig.2 Bifurcation plot of the Henon map

than 1 when a < a; (a; = 0.3675 corresponding to the first bifurca-
tion point of bifurcation plot), and greater than 1 when a > a;.
Consequently, in accordance with the stability conditions of fixed
points of nonlinear iterative map presented in Sec. 2, only in the
interval [0, a;) is the larger fixed point of the Henon map a trivial
attractor. When a > a,, the fixed point becomes an unstable saddle
point, and periodic/chaotic solutions emerge in the dynamical sys-
tem. Figure 2 demonstrates the corresponding bifurcation plot of
the Henon map with varying parameter a, which presents the state
of iterative solutions in good agreement with that of stability
analysis.

To overcome the nonconvergence, according to Eq. (2) the iter-
ative scheme of the Henon map using STM (C =1) is altered as

(C)]

Xip1 = qla —x; +by) + (1 = g)x
Yir1 = qxe + (1 = q)y

The fixed points of STM scheme of the Henon map are then

expressed as
xp = {b— 1+4/(b— 1)2—1—4(1}/2

=Xt

10)

This verifies that the STM scheme does not change the value of
fixed points of original dynamical system. In terms of Eq. (3) the

Jacobian matrix J of the STM scheme for the Henon map is
written as

J=l+qU-n=|' "9~ 2% b

11
q I—gq (11)
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Accordingly, the two eigenvalues )“/1,2 of Jacobian matrix in the
STM scheme of the Henon map at one fixed point are obtained

}~,1.,2:1*‘1+6[/11,2=lquqxfiq\/xf-+b

When ¢ =0.5, then 7} , = 0.5 — 0.5x¢=0.5/x7 + b.

Two eigenvalues of the STM scheme for the Henon map at the
larger fixed point, as a function of control parameter a, are shown
in Fig. 3 (¢=0.5). It is observed that the absolute values of two
eigenvalues /| , are less than 1 in the interval [0,1.4] of parameter
a. Hence, the Henon map controlled by STM (¢ =0.5) always has
a trivial attractor on this interval, and the unstable fixed point of
the original Henon map is stabilized as displayed in Fig. 4.

Figure 5 illustrates the iterative history of the x component of
the Henon map (b=0.3, a=1.4). It is observed that the chaotic
solutions of the Henon map emerge. The iterative history for the
Henon map that uses STM (C=1, ¢=0.5) for chaos control
(b=0.3, a=1.4) is shown in Fig. 6. After 16 iterations, the STM
scheme of the Henon map captures the expected fixed point.

12)

4 Convergence Control of PMA for Probabilistic
Analysis

Probabilistic analysis of performance functions is an important
task in uncertainty propagation for stochastic systems. It is
desirable to obtain cumulative distribution functions (CDF) and
probability density functions (PDF) of system responses since
these functions contain complete probabilistic information about
them.

As a method of inverse reliability analysis, PMA can calculate
the CDF and PDF of performance functions more efficiently than
numerical simulation approaches such as Monte Carlo simulation
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(MCS), importance Monte Carlo simulation, and so on. The
specific procedure of PMA to compute CDF and PDF may be
found in Refs. [21,25]. However, if the advanced mean value
scheme (13) of PMA is employed to solve for the CDF, it will not
converge due to numerical instability [21,25]. Therefore, the STM

”?H =P

scheme (14) for convergence control of PMA is activated and
used to alter the original AMV formula, which is written in a
standard normal space as

Vg(u)
—_p V8 13
et ﬂtHVg(“k)H (49
Vg(uy) )
= Cl|—fB,————uw 14
et = Wt d ( [[\|V8(Uk)|| W (9

where u is the standard normal variable vector, f3; represents the
target reliability index, and g(uy) is the performance function. For
general cases, the involutory matrix C is taken as the identity
matrix, and the factor ¢ can be set as 0.5, 0.1, or some smaller
value in sequence to balance its stabilizing effect on the system
with its computational cost [2—6]. Indeed, the factor ¢ cannot be
automatically predefined for complicated implicit maps from iter-
ative algorithms because the spectral radius of Jacobian matrix of
complex implicit maps at fixed points are not known beforehand.
Since the spectral radius determines the stability of the STM
scheme (14) and hence affects the magnitude of ¢, ¢ cannot be
known exactly at the onset of the calculation. This is a common
feature of other approaches (e.g., the relaxation method, move
limits, moving asymptotes and trust region management) of
convergence control that also involve some parameters which
cannot be set in advance, as pointed out in Ref. [5]. STM has a
solid mathematical basis and is a promising control strategy for
attacking nonconvergence problems of iterative computation in
probabilistic analysis and optimization design [2-5].

Example 2: Probabilistic analysis of the performance function
[3,19]

g(x) = [exp(0.8x; — 1.2) + exp(0.7x, — 0.6) — 5]/10,
X1~ N(408), Xp ~ N(S.OS)

When using the AMV iterative formula (13) to search for the
MPTP (minimum performance target point) of performance
function in example 2 with target reliability index f, € [-3, 3],
periodic solutions arise in the interval [2.618, 3] as shown in
Figs. 7(a) and 7(b). Figure 7(b) is the zoomed in view of Fig. 7(a)
to make the bifurcation behavior clear.

Subsequently, the stability analysis of the AMV formula for
solving example 2 is carried out. The explicit iterative scheme of
AMYV formula (13) for example 2 is expressed as

0.064 exp(0.64uk + 2)

ket 1

—P

\/ (0.064 exp(0.64u +2))* + (0.056 exp(0.64u +2.9))*

15)

0.056 exp(0.64u5 +2.9)

The corresponding Jacobian Matrix can be written as

aulch 6uli'+1

. ok ok :[1“ _;12} 16
E)u’z‘“ augﬂ I JIn
Ouk ous

The first eigenvalue 1, at the fixed point has a complicated expres-
sion not shown here; and the 'second eigenvalue at the fixed point

034501-4 / Vol. 135, MARCH 2013

\/ (0.064 exp(0.64u +2))* + (0.056 exp(0.64u +2.9))*

22 =0. It is noted that Eq. (15) is decoupled for two variables, and
det(J) =0 in Eq. (16) implies that the eigenvalue A, of J should
be equal to zero. Figure 8 exhibits the two eigenvalues of AMV
scheme (13) at the fixed point changing with parameter f,. It is
observed that the absolute value of the first egienvalue A, is less
than 1 when f,<2.618, and greater than 1 when f,>2.618.
Therefore, only in the interval [0, 2.618) is the fixed point of the
AMYV scheme stable.

Furthermore, the convergence control of AMV formula by
STM is performed. According to Eq. (14) the STM scheme
(C=1I, ¢=0.5) is described as
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g 0.064 exp(0.64u% 4 2
it =uk +0.5| —p, il 12 —uk
\/ (0.064 exp(0.64u +2))* + (0.056 exp(0.64u +2.9))*
17
' 0.056 exp(0.64uf + 2.9 '
T =k +0.5| —p, p( 2 +29) — b
\/(0.064 exp(0.64u + 2))2 + (0.056 exp(0.64u§ + 2.9))2

Similarly, the results of STM control for the AMV formula are
illustrated in Fig. 9, and the expected stable fixed points are
caught in the interval [2.618, 3]. Figure 10 displays the two
eigenvalues of STM scheme of AMV formula at the fixed point
with control parameter f.. The absolute value of the first egien-
value )fl is always less than 1 in the whole interval of f3,, and the
second eigenvalue at the fixed point 23 =1= ¢ = 0.5 which can be

Journal of Mechanical Design

deduced from Eq. (3) and Eq. (12). Thus, the STM scheme of
AMV formula is stable in the whole range i, € [—3, 3].

Figure 11 shows the iterative history of the AMV formula
(Py=3), which generates periodic solutions. Figure 12 demon-
strates the iterative history of STM control (C =1, ¢ =0.5) for the
AMV formula, which captures the stable fixed point after 17
iterations.
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Finally, based on the STM scheme (14) of the AMV formula,
the CDF and PDF of example 2 are calculated by locating the
MPTP of the performance function with the predeﬁned target
reliability index f, € [—3,3]. The results are shown in Figs. 13
and 14. Also, the results from Monte Carlo simulation with 10°
samples are presented for comparison. It can be seen that the con-
trolled AMV scheme of PMA compares well with the CDF and
PDF of the system output as computed by the Monte Carlo
approach while taking far less computational effort. In addition,
the PDF of system output is an asymmetric distribution and does
not obey the normal distribution, which is the probabilistic distri-
bution of input random variables.

5 Convergence Control of SORA for Reliability-Based
Design Optimization
The mathematical model of RBDO [4,18-20] can be generally

formulated as

034501-6 / Vol. 135, MARCH 2013

s.t. Pe(gi(dx) <0) <Py i=1,2,..m 8
hi(d) <0 j=m+1,.. .M (18)
d“-<d<d"

where d is the design variable vector, representing either deter-
ministic physical quantities or parameters of probability distribu-
tions of the random variables (e.g., mean values or standard
deviations of the random variables); x is the random variable
vector, representing uncertain quantities; g;(d, x) is defined as the
ith performance function, and g;(d,x) <0 denotes the failure
domain; Py; stands for the prescribed acceptable failure probabil-
ity; h;(d) are the deterministic constraints.

It is generally acknowledged that PMA for probabilistic con-
straints evaluation is more efficient, stable and less dependent on
probabilistic  distribution types than RIA (reliability index
approach) [4,18-20,26]. To enhance the computational efficiency
of two-level approach in RBDO model (18), Du and Chen [13]
developed the decoupled approach of SORA, which is suitable to
solve the nonlinear large-scale probabilistic optimization prob-
lems [11,12]. Hereafter, SORA is selected to establish the compu-
tational formula of RBDO, while PMA is applied to evaluate the
probabilistic constraints [11], as shown below

min f(d")
ot g(d =K >0 i=1,..m (19)
hi(d*) <0 j=m+1,..M
where k& denotes the current optimization cycle, f(f-‘*' represents

the MPTP vector in the physical space re§ard1ng the ith limit state
obtained in the (k— 1)th cycle, and b stands for the shift
parameter given as
Sk—1 *
X;  =T(u
=) 0

ok—1

514;1 — ! — %

where xA ! is the MPTP in physical space by the transformation

of MPTP u* in the standard normal space, which is searched
by using PMA. The SORA formulation is fully deterministic and
easily implemented and solved by classical optimization algo-
rithms [11]. When the AMV iterative formula of PMA shows the
numerical instability for some RBDO problems, the STM control
scheme (14) is adopted to tackle this trouble.

Example 3: Optimization problem with highly nonlinear
performance functions [4,22]

.  (d+d— 100 (dy —d> +10)°
min  2f(d) = 30 50
st Pr(gi(x) <0) <@(=f), j=123
0<d; <10, i=1,2
where, d = [u(x), u(x:)]", xl,AZNNSOSB) p,=3.0. Agl
=x312/20 — 1, g(x)=1— (Y — 6)> — (Y —6)° +0.6(Y —6)

23(x)=80/(x2+8x2+5)—1, Y=0.9063x; +0. 4226}(2, Z=0. 4226x|
—0.9063x;.

The computational results of RBDO and deterministic optimi-
zation with d=1[5, 5]* as initial design are listed in Table 1.
Table 2 demonstrates the reliabilities of three performance func-
tions when using different optimization models. It is seen that
both the method of SORA with PMA and PMA two-level obtain
the incorrect optimal solutions shown in bold, because the AMV
formula of PMA generates the periodic or chaotic solutions, and
cannot converge and search for the stable MPTP for the second
performance function g,(x), as scrutinized in Ref. [4]. Further, the
reliabilities in bold for performance function g,(x) using SORA
with PMA and PMA two-level do not exceed the prescribed
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Table 1 Results of RBDO and deterministic optimization for example 3

Number of optimization cycles

Number of function evaluations Optimal solution f (d},d3)

SORA with PMA g = 1.0*
q=0.5

q=0.1

PMA two-level ¢ =1.0%
q=0.5

q=0.1

Youn et al. [22]
Deterministic optimization

AN N w

—_

Fail to converge

Fail to converge

—1.8373 (5.1498,1.7022)

973 —1.7228 (4.5573,1.9690)
1844 —1.7230 (4.5570,1.9686)
—1.8340 (5.1064,1.7085)

1701 —1.7247 (4.5580,1.9647)
3234 —1.7241 (4.5560,1.9661)
187 —1.7247 (4.5580,1.9645)
51 —2.2917 (5.1969, 0.7045)

g =1.0 means no control and the original AMV formula of PMA is used.

Table 2 Reliabilities of three performance functions with different optimization models by FORM and MCS (Note: the numbers in
the bracket stands for the reliabilities by MCS)

81

SORA with PMA ¢=1.0
q=0.5

q=0.1

PMA two-level g =1.0
q=0.5

q¢=0.1

Youn et al. [22]
Deterministic optimization

0.9987 (0.9986)
0.9987 (0.9986)
0.9987 (0.9985)

0.9986 (0.9984)
0.9987 (0.9985)
0.9987 (0.9985)

0.9987 (0.9985)
0.4540 (0.4451)

82 83
0.8347 (0.8926) 1.0000 (1.0000)
0.9987 (0.9993) 1.0000 (1.0000)
0.9987 (0.9994) 1.0000 (1.0000)
0.8600 (0.9111) 1.0000 (1.0000)
0.9987 (0.9994) 1.0000 (1.0000)
0.9986 (0.9993) 1.0000 (1.0000)
0.9987 (0.9993) 1.0000 (1.0000)
0.5064 (0.5270) 1.0000 (1.0000)

reliability (0.9987 for target reliability index 5, =3), as presented
in Table 2. Accordingly, before the reliability-based design
optimization is solved, it is necessary to take some measures to
correctly evaluate the probabilistic constraints for some problems.

Subsequently, in order to achieve the stable and attracting fixed
point of performance function in which the AMYV iterative scheme
fails, it is desirable to apply the stability transformation formula-
tion (14) for convergence control. Herein, the involutory matrix C
of Eq. (14) is set as identity matrix, and the factor ¢ is taken as 0.5
and 0.1. From Table 1, it is observed that with STM convergence
control (¢=0.5), SORA with PMA converges to —1.7228
(4.5573, 1.9690) after five optimization cycles with 973 evalua-
tions of performance functions. However, PMA two-level con-
verges to —1.7247 (4.5580, 1.9647) after six optimization cycles
with 1701 evaluations of performance functions, which takes
fairly more computational cost. The optimal design and reliabil-
ities corresponding to three performance functions are almost the
same as those of Youn et al. [22]. It should be pointed out that
Youn et al. [22] first performed a deterministic optimization
design and then implemented RBDO based on this optimal solu-
tion, which can apparently accelerate the convergence of RBDO.
If ¢ in the STM scheme of AMV formula is set as smaller value
0.1, the number of function evaluations will be increased and the
stably convergent optimum design can be obtained. Summarily,
SORA with PMA by STM convergence control attains the correct
optimal design of RBDO problem with robust convergence and
affordable computational efforts.

In addition, for the deterministic optimization of example 3,
although the optimal objective is —2.2917 better than that of
RBDO, the approximate reliabilities in bold for the first and
second performance function by FORM are, respectively, 0.4540
and 0.5064, when the optimum design is substituted into the prob-
abilistic constraints. It is obvious that they cannot meet the pre-
scribed reliability requirement. Consequently, from the viewpoint
of uncertainty design, the result of deterministic optimization is
quite unsafe and inadmissible. For ensuring the safe optimal
design, it is imperative to adopt the model and method of RBDO
for engineering design.

Journal of Mechanical Design

Finally, for the case of black box functions, e.g., when con-
straints and/or objectives are described by FEA (finite element
analysis) or CFD (computational fluid dynamics) codes, STM has
the potential to tackle the numerical instabilities in RBDO. The
sensitivity analysis is required to apply the difference form of
implicit functions. Meantime, the original AMV formula is
replaced by the STM scheme of iterative formula in searching for
the MPTP.

6 Conclusions

Although iterative algorithms are widely used in reliability
analysis and design optimization, there exist numerical instability
phenomena such as periodic oscillation, bifurcation, and chaos in
iterative procedures for solving some nonlinear problems.

First, the fundamental causes of chaotic dynamics for numerical
instabilities of periodic oscillation and chaos of iterative solutions
are exposed by detailed stability analysis of iterative procedures
such as the classical Henon map and the AMYV iterative formula
searching for the MPTP. In the past, it was commonly recognized
that the high nonlinearity of system responses leads to the noncon-
vergence of iterative algorithms. Actually, it is more appropriate
to state that the nonlinearity of system responses formulates the
nonlinear maps of iterative algorithms, leading to the numerical
instabilities and nonconvergence of dynamical systems.

Moreover, as an effective, simple, and general control strategy,
the stability transformation method is proposed to overcome the
numerical instabilities of iterative algorithms in reliability analy-
sis and optimal design. Several benchmark examples illustrate
that STM achieves the convergence control of PMA for probabil-
istic analysis and SORA for reliability-based design optimization
with affordable computational cost and robust convergence. In
practice, STM rectifies the convergence failure of iterative
algorithms while also proving convenient to implement and com-
prehend. Also, it is expected that STM can conquer the noncon-
vergence challenges of large-scale examples involving complex
implicit functions for reliability analysis and optimization in
structural and mechanical engineering.
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Finally, it is worth pointing out that the recursive schemes in
structural dynamics, heat transfer, wave propagation, and fluid
dynamics possibly produce unexpected oscillating or divergent
solutions. In essence, recursive schemes have the same expression
as iterative schemes. Therefore, chaotic dynamics theory and
STM can shed some insights into the numerical instability analy-
sis and convergence control of these recursive schemes, and they
can promote the algorithm design and development in dynamics.
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